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1 Introduction

Undoubtedly the following fact is surprising when being first encountered with:

It is possible to cut a hole in the unit cube such that another unit cube can pass through it.

Indeed, Prince Rupert of the Rhine won a wager in the 17th century by betting on the validity of this
claim. An elegant and simple way to see why this assertion is true is presented in Figure 1: it is easy to
verify that the projection of the unit cube in the direction of a main diagonal yields a regular hexagon of
side length

√
2/3 and the unit square (a different projection of the cube) fits inside that hexagon. These

two observations are already enough to win Rupert’s bet; at the same time they also open a whole world
of interesting questions, conjectures and studies.

Figure 1: The unit square fits inside the
regular hexagon of side length

√
2/3.

Figure 2: Two projections of the same truncated
icosidodecahedron, one inside the other.

Analogously to the cube, Rupert’s property can be defined for any polyhedron. A somewhat imprecise
definition of this property is as follows: a (convex) polyhedron P ⊂ R3 is Rupert (or has Rupert’s property)
if a hole (with the shape of a straight tunnel) can be cut into it such that a copy of P can be moved through
this hole. Rupert’s problem is the task to decide whether a given polyhedron has Rupert’s property.

Scriba showed in 1968 that the tetrahedron and octahedron have Rupert’s property [8]. Half a century
later and hence already quite recently, Jerrard, Wetzel and Yuan built on Scriba’s work and investigated
Rupert’s property of Platonic solids further: they could prove that all five of them are Rupert [5]. One year
later Chai, Yuan and Zamfirescu looked at Archimedean solids from “Rupert’s perspective” and showed
that 8 out of 13 have Rupert’s property [1]. In the same articles [5, 1] the possible non-existence of
“non-Rupert” convex polyhedra in R3 is formulated as a conjecture. Another year later, Hoffmann [4] and
Lavau [6] showed in 2019 Rupert’s property for the truncated tetrahedron, thus enhancing the number to 9
out of 13. In 2021 the authors of the present text proposed an algorithmic approach for Rupert’s problem:

∗This extended abstract for a poster (short communication) at the ISSAC conference 2022 summarizes a selection of findings
from the recent preprint “An algorithmic approach to Rupert’s problem” [9] by the same authors.

32



Solving Rupert’s problem algorithmically ISSAC 2022 poster abstracts

they showed that it is algorithmically decidable for polyhedra with algebraic coordinates and also designed
a probabilistic algorithm which can efficiently prove that a given polyhedron is Rupert [9]. They “solved”
the truncated icosidodecahedron (Figure 2), pushing the number of settled Archimedean solids to 10. The
current text summarizes and presents some of the findings of the latter work.

A natural extension of Rupert’s problem concerns finding the optimal solution for given polyhedra. It
was first investigated by Nieuwland who could prove that the cube with side length 3

√
2/4 ≈ 1.06 can be

moved through a hole of the unit cube, and that this number is optimal. Conjecturally, the same number
seems to be achieved by the optimal solution of the octahedron. Moreover, recent findings of the authors
suggest that the dodecahedron and icosahedron both have solutions (Figure 3 and Figure 4) with optimal
“scaling factor” ≈ 1.0108 which is a root of P (x) = 2025x8 − 11970x6 + 17009x4 − 9000x2 + 2000. The
connection between duality and Rupert’s property is evident but yet to be fully understood.

Figure 3: The dodecahedron is Rupert. Figure 4: The icosahedron is Rupert.

2 Probabilistic algorithm

Contrary to the existing methods for proving that a polyhedron has Rupert’s property, we present a new
probabilistic and algorithmic approach to Rupert’s problem in the recent preprint [9]. The main idea of
the first and naive version of our algorithm is already clearly visible in Figure 1: a polyhedron P is Rupert
if and only if there exist two projection matrices Mθ1,ϕ1 ,Mθ2,ϕ2 : R3 → R2, a rotation matrix Rα : R2 → R2

and a translation map Tx,y : R2 → R2 such that the polygon P = (Tx,y ◦Rα ◦Mθ1,ϕ1)(P) lies strictly inside
the polygon Q = Mθ2,ϕ2(P). It follows that any solution of Rupert’s problem can be translated into the
7 parameters (x, y, α, θ1, θ2, ϕ1, ϕ2) and vice versa. Moreover, one can easily bound all the parameters:
α, θ1, θ2 ∈ [0, 2π), ϕ1, ϕ2 ∈ [0, π] and x, y ∈ [−R,R], where R ∈ R is the circumference radius of P. Finally,
it is algorithmically not difficult to decide whether a polygon P lies inside a polygon Q. We arrive at the
Las Vegas type algorithm below. Note that this algorithm is approximately complete for Rupert polyhedra
but essentially incomplete in general. In other words, the algorithm will find a solution eventually it it
exists, but cannot prove the non-existence of a solution.

Algorithm 1

Input: A polyhedron P = {P1, . . . , Pn} ⊂ R3.

Output: The solution encoded by (x, y, α, θ1, θ2, ϕ1, ϕ2) ∈ R7 if P is Rupert.

(1) Find the circumference radius R of P. Draw x and y uniformly in [−R,R], θ1, θ2 and α uniformly
in [0, 2π), and ϕ1, ϕ2 uniformly in [0, π].

(2) Construct two 3×2 matrices A and B corresponding to the linear maps Rα◦Mθ1,ϕ1 , Mθ2,ϕ2 . Compute
two projections of P given by P ′ := Tx,y(A ·P) = A ·P + (x, y) and Q′ := B ·P.

(3) Find vertices on the convex hulls of P ′ and Q′; denote them by P and Q.
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(4) Decide whether P lies inside of Q by checking each vertex of P.

(5) If step (4) yields a True, return (x, y, α, θ1, θ2, ϕ1, ϕ2). Otherwise, repeat steps (1)-(5).

Already this very simple algorithm is able to find solutions for many polyhedra. However, in practice, it
is quite slow, mostly because the 7-dimensional search space for (x, y, α, θ1, θ2, ϕ1, ϕ2) is large. The first and
most significant improvement to it is to reduce the parameter search space from R7 to R4 by algorithmically
finding x, y and α for given θ1, θ2, ϕ1, ϕ2. For that purpose we can use Chazelle’s algorithm [2] for deciding
the polygon containment under translation and rotation. Another natural practical improvement to the
resulting algorithm is to discard pairs (P,Q) if it can be algorithmically easily seen that P cannot fit
inside Q. Indeed, we can do so by first computing elementary geometric invariants of the polygons like the
perimeter, area and diameter. Moreover, these invariants can be computed for a large batch of polygons
coming from randomly drawn projections; then we can discard most pairs and need to test only the
remaining ones.

As an example, our algorithm can prove the following theorem in a few seconds on a regular PC, settling
down a previously unsolved Archimedean solid:

Theorem 1. The truncated icosidodecahedron has Rupert’s property.

A pictorial proof corresponding to the found parameters x = y = 0, α = 0.4358, θ1 = 2.7769, θ2 =
2.0941, ϕ1 = 0.7906, ϕ2 = 2.8967 is presented in Figure 2. Running the probabilistic algorithm on a
collection of famous solids and verifying afterwards rigorously, we obtain the following result, after a few
minutes of computation on a regular laptop:

Theorem 2. It holds that:

1. All 5 Platonic solids are Rupert.

2. At least 10 out of 13 Archimedean solids are Rupert.

3. At least 9 out of 13 Catalan solids are Rupert.

4. At least 82 out of 92 Johnson solids are Rupert.

We suspect that the remaining polyhedra do not admit Rupert’s property. Especially for the rhombi-
cosidodecahedron we can argue statistically and heuristically to state the following conjecture with quite
some confidence:

Conjecture 1. The rhombicosidodecahedron does not have Rupert’s property.

3 Deterministic algorithm

Even though the probabilistic algorithm presented above works quite well in practice, it cannot disprove
Rupert’s property. For this purpose we designed a deterministic algorithm by showing that Rupert’s
problem can be reformulated in the decision problem of the emptiness of semi-algebraic sets. This classical
problem is known to be solved [10] and we may rely on quite efficient algorithms for it [3, 7].

We call the cycle (s1, . . . , sk) the silhouette of a polyhedron P = {P1, . . . , Pn} ∈ R3 under some
projection Mθ,ϕ if Ps1 , . . . , Psk is the boundary of Mθ,ϕ(P). By Sn we denote the set of all such non-empty
cycles of the numbers from 1 to n.

The deterministic algorithm can decide whether there exists a solution to Rupert’s problem

(Tx,y ◦Rα ◦Mθ1,ϕ1)(P) ⊂Mθ2,ϕ2(P)◦
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for any possible silhouette s ∈ Sn of the projection on the right-hand side. Then the full algorithm runs
over all elements of Sn.

Let x, y, α, θ1, ϕ1, θ2, ϕ2 be variables. Given a silhouette s = (s1, s2, . . . , sk), let Qi := Mθ2,ϕ2(Psi) and
Pj := (Tx,y ◦ Rα ◦Mθ1,ϕ1)(Pj) for i = 1, . . . , k and j = 1, . . . , n. We also set Qk+1 := Q1. In other words,
Q1, . . . , Qk denote the vertices on the boundary of Mθ2,ϕ2(P)◦ given a solution with silhouette s. We define
the system of kn inequalities in the seven unknowns x, y, α, θ1, ϕ1, θ2, ϕ2:

det(Qsi+1 − Pj , Qsi − Pj) > 0 j = 1, . . . , n and i = 1, . . . , k. (1)

The main observation is that (1) has a solution (x, y, α, θ1, ϕ1, θ2, ϕ2) if and only if there exists a solution
to Rupert’s problem with silhouette s. Moreover, the system (1) is algebraic in x, y and the trigonometric

values of the other variables. Hence, the rational parametrization of the circle t 7→
(
1−t2
1+t2

, 2t
1+t2

)
and a

(careful) clearance of denominators transforms (1) into a system of polynomial inequalities. This proves:

Theorem 3. Let P be a convex polyhedron with algebraic coordinates. There exists a deterministic algo-
rithm deciding whether P is Rupert and finding a solution if it exists. If moreover P has n vertices with
integers coordinates bounded in absolute value by m, then the running time of this algorithm is at most
(log(m) · n)O(1) · n!.

In practice, it seems that the polynomial systems one (naively) obtains already from quite small poly-
hedra are too big to be solved with existing methods. For example, for the rhombicosidodecahedron rough
estimates imply that we would need to prove emptiness of 50 semi-algebraic sets each defined by 3600
polynomial inequalities in 6 variables of total degree 22. Of course, the ongoing task is to reduce this
number significantly by exploiting symmetries in the system coming from its definition and the symmetries
of the polyhedron.
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